# Nvidia > Minitron is released under the [NVIDIA Open Model License Agreement](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf). --- # Source: https://huggingface.co/docs/transformers/en/model_doc/nemotron.md # Nemotron ## License Minitron is released under the [NVIDIA Open Model License Agreement](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf). The use of this model is governed by the [NVIDIA AI Foundation Models Community License Agreement](https://developer.nvidia.com/downloads/nv-ai-foundation-models-license). ## Description Nemotron-4 is a family of enterprise ready generative text models compatible with [NVIDIA NeMo Framework](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/). NVIDIA NeMo is an end-to-end, cloud-native platform to build, customize, and deploy generative AI models anywhere. It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models, offering enterprises an easy, cost-effective, and fast way to adopt generative AI. To get access to NeMo Framework, please sign up at [this link](https://developer.nvidia.com/nemo-framework/join). ## References [Announcement Blog](https://developer.nvidia.com/blog/nvidia-ai-foundation-models-build-custom-enterprise-chatbots-and-co-pilots-with-production-ready-llms/) ## Model Architecture **Architecture Type:** Transformer **Network Architecture:** Transformer Decoder (auto-regressive language model). ## Minitron ### Minitron 4B Base Minitron is a family of small language models (SLMs) obtained by pruning NVIDIA's [Nemotron-4 15B](https://huggingface.co/papers/2402.16819) model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models. Deriving the Minitron 8B and 4B models from the base 15B model using our approach requires up to **40x fewer training tokens** per model compared to training from scratch; this results in **compute cost savings of 1.8x** for training the full model family (15B, 8B, and 4B). Minitron models exhibit up to a 16% improvement in MMLU scores compared to training from scratch, perform comparably to other community models such as Mistral 7B, Gemma 7B and Llama-3 8B, and outperform state-of-the-art compression techniques from the literature. Please refer to our [arXiv paper](https://huggingface.co/papers/2407.14679) for more details. Minitron models are for research and development only. ### HuggingFace Quickstart The following code provides an example of how to load the Minitron-4B model and use it to perform text generation. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from accelerate import Accelerator # Load the tokenizer and model model_path = 'nvidia/Minitron-4B-Base' tokenizer = AutoTokenizer.from_pretrained(model_path) device = Accelerator().device dtype = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, dtype=dtype, device_map=device) # Prepare the input text prompt = 'Complete the paragraph: our solar system is' inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device) # Generate the output outputs = model.generate(inputs, max_length=20) # Decode and print the output output_text = tokenizer.decode(outputs[0]) print(output_text) ``` ### Evaluation Results *5-shot performance.* Language Understanding evaluated using [Massive Multitask Language Understanding](https://huggingface.co/papers/2009.03300): | Average | | :---- | | 58.6 | *Zero-shot performance.* Evaluated using select datasets from the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) with additions: | HellaSwag | Winogrande | GSM8K| ARC-C | XLSum | | :------------- | :------------- | :------------- | :------------- | :------------- | | 75.0 | 74.0 | 24.1 | 50.9 | 29.5 | *Code generation performance*. Evaluated using [HumanEval](https://github.com/openai/human-eval): | p@1, 0-Shot | | :------------- | | 23.3 | Please refer to our [paper](https://huggingface.co/papers/2407.14679) for the full set of results. ### Citation If you find our work helpful, please consider citing our paper: ```bibtex @article{minitron2024, title={Compact Language Models via Pruning and Knowledge Distillation}, author={Saurav Muralidharan and Sharath Turuvekere Sreenivas and Raviraj Joshi and Marcin Chochowski and Mostofa Patwary and Mohammad Shoeybi and Bryan Catanzaro and Jan Kautz and Pavlo Molchanov}, journal={arXiv preprint arXiv:2407.14679}, year={2024}, url={https://huggingface.co/papers/2407.14679}, } ``` ## NemotronConfig[[transformers.NemotronConfig]] #### transformers.NemotronConfig[[transformers.NemotronConfig]] [Source](https://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/configuration_nemotron.py#L28) This is the configuration class to store the configuration of a [NemotronModel](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronModel). It is used to instantiate an Nemotron model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nemotron-8B. e.g. [nvidia/nemotron-3-8b-base-4k-hf](https://huggingface.co/nvidia/nemotron-3-8b-base-4k-hf). Configuration objects inherit from [PreTrainedConfig](/docs/transformers/v5.0.0rc1/en/main_classes/configuration#transformers.PreTrainedConfig) and can be used to control the model outputs. Read the documentation from [PreTrainedConfig](/docs/transformers/v5.0.0rc1/en/main_classes/configuration#transformers.PreTrainedConfig) for more information. ```python >>> from transformers import NemotronModel, NemotronConfig >>> # Initializing a Nemotron nemotron-15b style configuration >>> configuration = NemotronConfig() >>> # Initializing a model from the nemotron-15b style configuration >>> model = NemotronModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` **Parameters:** vocab_size (`int`, *optional*, defaults to 256000) : Vocabulary size of the Nemotron model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [NemotronModel](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronModel) hidden_size (`int`, *optional*, defaults to 6144) : Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 24576) : Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32) : Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 48) : Number of attention heads for each attention layer in the Transformer decoder. head_dim (`int`, *optional*) : Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if None num_key_value_heads (`int`, *optional*) : This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`) : The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 4096) : The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.0134) : The standard deviation of the truncated_normal_initializer for initializing all weight matrices. norm_eps (`float`, *optional*, defaults to 1e-05) : The epsilon used by the normalization layers. use_cache (`bool`, *optional*, defaults to `True`) : Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*) : Padding token id. bos_token_id (`int`, *optional*, defaults to 2) : Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 3) : End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`) : Whether to tie weight embeddings rope_parameters (`RopeParameters`, *optional*) : Dictionary containing the configuration parameters for the RoPE embeddings. The dictionary should contain a value for `rope_theta` and optionally parameters used for scaling in case you want to use RoPE with longer `max_position_embeddings`. attention_bias (`bool`, *optional*, defaults to `False`) : Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0) : The dropout ratio for the attention probabilities. mlp_bias (`bool`, *optional*, defaults to `False`) : Whether to use a bias in up_proj and down_proj layers in the MLP layers. ## NemotronModel[[transformers.NemotronModel]] #### transformers.NemotronModel[[transformers.NemotronModel]] [Source](https://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/modeling_nemotron.py#L624) The bare Nemotron Model outputting raw hidden-states without any specific head on top. This model inherits from [PreTrainedModel](/docs/transformers/v5.0.0rc1/en/main_classes/model#transformers.PreTrainedModel). Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. forwardtransformers.NemotronModel.forwardhttps://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/modeling_nemotron.py#L648[{"name": "input_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "attention_mask", "val": ": typing.Optional[torch.Tensor] = None"}, {"name": "position_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "past_key_values", "val": ": typing.Optional[transformers.cache_utils.Cache] = None"}, {"name": "inputs_embeds", "val": ": typing.Optional[torch.FloatTensor] = None"}, {"name": "use_cache", "val": ": typing.Optional[bool] = None"}, {"name": "output_attentions", "val": ": typing.Optional[bool] = None"}, {"name": "output_hidden_states", "val": ": typing.Optional[bool] = None"}, {"name": "cache_position", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "**kwargs", "val": ""}]- **input_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) - **attention_mask** (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) -- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) - **position_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) - **past_key_values** (`~cache_utils.Cache`, *optional*) -- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. - **inputs_embeds** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) -- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. - **use_cache** (`bool`, *optional*) -- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - **output_attentions** (`bool`, *optional*) -- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. - **output_hidden_states** (`bool`, *optional*) -- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. - **cache_position** (`torch.LongTensor` of shape `(sequence_length)`, *optional*) -- Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.0[transformers.modeling_outputs.BaseModelOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.BaseModelOutputWithPast) or `tuple(torch.FloatTensor)`A [transformers.modeling_outputs.BaseModelOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.BaseModelOutputWithPast) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration ([NemotronConfig](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronConfig)) and inputs. - **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) -- Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. - **past_key_values** (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`) -- It is a [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. The [NemotronModel](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronModel) forward method, overrides the `__call__` special method. Although the recipe for forward pass needs to be defined within this function, one should call the `Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. **Parameters:** config ([NemotronConfig](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronConfig)) : Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [from_pretrained()](/docs/transformers/v5.0.0rc1/en/main_classes/model#transformers.PreTrainedModel.from_pretrained) method to load the model weights. **Returns:** `[transformers.modeling_outputs.BaseModelOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.BaseModelOutputWithPast) or `tuple(torch.FloatTensor)`` A [transformers.modeling_outputs.BaseModelOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.BaseModelOutputWithPast) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration ([NemotronConfig](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronConfig)) and inputs. - **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) -- Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. - **past_key_values** (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`) -- It is a [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. ## NemotronForCausalLM[[transformers.NemotronForCausalLM]] #### transformers.NemotronForCausalLM[[transformers.NemotronForCausalLM]] [Source](https://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/modeling_nemotron.py#L867) forwardtransformers.NemotronForCausalLM.forwardhttps://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/modeling_nemotron.py#L879[{"name": "input_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "attention_mask", "val": ": typing.Optional[torch.Tensor] = None"}, {"name": "position_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "past_key_values", "val": ": typing.Optional[transformers.cache_utils.Cache] = None"}, {"name": "inputs_embeds", "val": ": typing.Optional[torch.FloatTensor] = None"}, {"name": "labels", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "use_cache", "val": ": typing.Optional[bool] = None"}, {"name": "output_attentions", "val": ": typing.Optional[bool] = None"}, {"name": "output_hidden_states", "val": ": typing.Optional[bool] = None"}, {"name": "cache_position", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "logits_to_keep", "val": ": typing.Union[int, torch.Tensor] = 0"}, {"name": "**kwargs", "val": ""}]- **input_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) - **attention_mask** (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) -- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) - **position_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) - **past_key_values** (`~cache_utils.Cache`, *optional*) -- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. - **inputs_embeds** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) -- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. - **labels** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - **use_cache** (`bool`, *optional*) -- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - **output_attentions** (`bool`, *optional*) -- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. - **output_hidden_states** (`bool`, *optional*) -- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. - **cache_position** (`torch.LongTensor` of shape `(sequence_length)`, *optional*) -- Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - **logits_to_keep** (`Union[int, torch.Tensor]`, defaults to `0`) -- If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length).0[transformers.modeling_outputs.CausalLMOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.CausalLMOutputWithPast) or `tuple(torch.FloatTensor)`A [transformers.modeling_outputs.CausalLMOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.CausalLMOutputWithPast) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration ([NemotronConfig](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronConfig)) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Language modeling loss (for next-token prediction). - **logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). - **past_key_values** (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`) -- It is a [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. The [NemotronForCausalLM](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronForCausalLM) forward method, overrides the `__call__` special method. Although the recipe for forward pass needs to be defined within this function, one should call the `Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. Example: ```python >>> from transformers import AutoTokenizer, NemotronForCausalLM >>> model = NemotronForCausalLM.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf") >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/nemotron-3-8b-base-4k-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ``` **Parameters:** input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) : Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`~cache_utils.Cache`, *optional*) : Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) : Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*) : If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*) : Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*) : Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*) : Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. logits_to_keep (`Union[int, torch.Tensor]`, defaults to `0`) : If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). **Returns:** `[transformers.modeling_outputs.CausalLMOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.CausalLMOutputWithPast) or `tuple(torch.FloatTensor)`` A [transformers.modeling_outputs.CausalLMOutputWithPast](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.CausalLMOutputWithPast) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration ([NemotronConfig](/docs/transformers/v5.0.0rc1/en/model_doc/nemotron#transformers.NemotronConfig)) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Language modeling loss (for next-token prediction). - **logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). - **past_key_values** (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`) -- It is a [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. ## NemotronForSequenceClassification[[transformers.NemotronForSequenceClassification]] #### transformers.NemotronForSequenceClassification[[transformers.NemotronForSequenceClassification]] [Source](https://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/modeling_nemotron.py#L954) forwardtransformers.NemotronForSequenceClassification.forwardhttps://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/modeling_layers.py#L111[{"name": "input_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "attention_mask", "val": ": typing.Optional[torch.Tensor] = None"}, {"name": "position_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "past_key_values", "val": ": typing.Optional[transformers.cache_utils.Cache] = None"}, {"name": "inputs_embeds", "val": ": typing.Optional[torch.FloatTensor] = None"}, {"name": "labels", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "use_cache", "val": ": typing.Optional[bool] = None"}, {"name": "**kwargs", "val": ": typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs]"}]- **input_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) - **attention_mask** (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) -- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) - **position_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) - **past_key_values** (`~cache_utils.Cache`, *optional*) -- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. - **inputs_embeds** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) -- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. - **labels** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - **use_cache** (`bool`, *optional*) -- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`).0`transformers.modeling_outputs.SequenceClassifierOutputWithPast` or `tuple(torch.FloatTensor)`A `transformers.modeling_outputs.SequenceClassifierOutputWithPast` or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration (`None`) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Classification (or regression if config.num_labels==1) loss. - **logits** (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`) -- Classification (or regression if config.num_labels==1) scores (before SoftMax). - **past_key_values** (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`) -- It is a [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. The `GenericForSequenceClassification` forward method, overrides the `__call__` special method. Although the recipe for forward pass needs to be defined within this function, one should call the `Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. **Parameters:** input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) : Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`~cache_utils.Cache`, *optional*) : Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) : Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*) : If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). **Returns:** ``transformers.modeling_outputs.SequenceClassifierOutputWithPast` or `tuple(torch.FloatTensor)`` A `transformers.modeling_outputs.SequenceClassifierOutputWithPast` or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration (`None`) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Classification (or regression if config.num_labels==1) loss. - **logits** (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`) -- Classification (or regression if config.num_labels==1) scores (before SoftMax). - **past_key_values** (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`) -- It is a [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. ## NemotronForQuestionAnswering[[transformers.NemotronForQuestionAnswering]] #### transformers.NemotronForQuestionAnswering[[transformers.NemotronForQuestionAnswering]] [Source](https://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/modeling_nemotron.py#L957) forwardtransformers.NemotronForQuestionAnswering.forwardhttps://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/modeling_layers.py#L191[{"name": "input_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "attention_mask", "val": ": typing.Optional[torch.Tensor] = None"}, {"name": "position_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "past_key_values", "val": ": typing.Optional[transformers.cache_utils.Cache] = None"}, {"name": "inputs_embeds", "val": ": typing.Optional[torch.FloatTensor] = None"}, {"name": "start_positions", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "end_positions", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "**kwargs", "val": ": typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs]"}]- **input_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) - **attention_mask** (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) -- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) - **position_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) - **past_key_values** (`~cache_utils.Cache`, *optional*) -- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. - **inputs_embeds** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) -- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. - **start_positions** (`torch.LongTensor` of shape `(batch_size,)`, *optional*) -- Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. - **end_positions** (`torch.LongTensor` of shape `(batch_size,)`, *optional*) -- Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss.0[transformers.modeling_outputs.QuestionAnsweringModelOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.QuestionAnsweringModelOutput) or `tuple(torch.FloatTensor)`A [transformers.modeling_outputs.QuestionAnsweringModelOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.QuestionAnsweringModelOutput) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration (`None`) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. - **start_logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length)`) -- Span-start scores (before SoftMax). - **end_logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length)`) -- Span-end scores (before SoftMax). - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. The `GenericForQuestionAnswering` forward method, overrides the `__call__` special method. Although the recipe for forward pass needs to be defined within this function, one should call the `Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. **Parameters:** input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) : Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`~cache_utils.Cache`, *optional*) : Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) : Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*) : Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*) : Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. **Returns:** `[transformers.modeling_outputs.QuestionAnsweringModelOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.QuestionAnsweringModelOutput) or `tuple(torch.FloatTensor)`` A [transformers.modeling_outputs.QuestionAnsweringModelOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.QuestionAnsweringModelOutput) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration (`None`) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. - **start_logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length)`) -- Span-start scores (before SoftMax). - **end_logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length)`) -- Span-end scores (before SoftMax). - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. ## NemotronForTokenClassification[[transformers.NemotronForTokenClassification]] #### transformers.NemotronForTokenClassification[[transformers.NemotronForTokenClassification]] [Source](https://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/models/nemotron/modeling_nemotron.py#L961) forwardtransformers.NemotronForTokenClassification.forwardhttps://github.com/huggingface/transformers/blob/v5.0.0rc1/src/transformers/modeling_layers.py#L254[{"name": "input_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "attention_mask", "val": ": typing.Optional[torch.Tensor] = None"}, {"name": "position_ids", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "past_key_values", "val": ": typing.Optional[transformers.cache_utils.Cache] = None"}, {"name": "inputs_embeds", "val": ": typing.Optional[torch.FloatTensor] = None"}, {"name": "labels", "val": ": typing.Optional[torch.LongTensor] = None"}, {"name": "use_cache", "val": ": typing.Optional[bool] = None"}, {"name": "**kwargs", "val": ": typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs]"}]- **input_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) - **attention_mask** (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) -- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) - **position_ids** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) - **past_key_values** (`~cache_utils.Cache`, *optional*) -- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. - **inputs_embeds** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) -- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. - **labels** (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) -- Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - **use_cache** (`bool`, *optional*) -- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`).0[transformers.modeling_outputs.TokenClassifierOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.TokenClassifierOutput) or `tuple(torch.FloatTensor)`A [transformers.modeling_outputs.TokenClassifierOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.TokenClassifierOutput) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration (`None`) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Classification loss. - **logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`) -- Classification scores (before SoftMax). - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. The `GenericForTokenClassification` forward method, overrides the `__call__` special method. Although the recipe for forward pass needs to be defined within this function, one should call the `Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. **Parameters:** input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of input sequence tokens in the vocabulary. Padding will be ignored by default. Indices can be obtained using [AutoTokenizer](/docs/transformers/v5.0.0rc1/en/model_doc/auto#transformers.AutoTokenizer). See [PreTrainedTokenizer.encode()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.encode) and [PreTrainedTokenizer.__call__()](/docs/transformers/v5.0.0rc1/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.__call__) for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) : Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`~cache_utils.Cache`, *optional*) : Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Only [Cache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.Cache) instance is allowed as input, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If no `past_key_values` are passed, [DynamicCache](/docs/transformers/v5.0.0rc1/en/internal/generation_utils#transformers.DynamicCache) will be initialized by default. The model will output the same cache format that is fed as input. If `past_key_values` are used, the user is expected to input only unprocessed `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, unprocessed_length)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) : Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*) : Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*) : If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). **Returns:** `[transformers.modeling_outputs.TokenClassifierOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.TokenClassifierOutput) or `tuple(torch.FloatTensor)`` A [transformers.modeling_outputs.TokenClassifierOutput](/docs/transformers/v5.0.0rc1/en/main_classes/output#transformers.modeling_outputs.TokenClassifierOutput) or a tuple of `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the configuration (`None`) and inputs. - **loss** (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) -- Classification loss. - **logits** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`) -- Classification scores (before SoftMax). - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) -- Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) -- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.